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In this report, we review the Lovász local lemma in the symmetric case and give sharp estimates
for the required condition by following Shearer (1985). In Section 1, we give a proof of the (sym-
metric) Lovász local lemma, and see that the famous condition ‘ep(d+ 1) ≤ 1’ can be weakened to
‘epd ≤ 1’ when the dependency graph is undirected. In Section 2, we see that the bound we prove in
Section 1 is actually optimal, by constructing a counterexample for the range of parameter violating
the bound.

Although this report mostly followed the techniques given in the paper Shearer (1985), we have
rearranged and reformulated the original argument to make it easier to understand and made several
remarks explaining the intuition behind the proofs.

1 Sharper local lemma for undirected graphs

In combinatorics, probabilistic methods are used for proving the existence of certain objects. An
abstract way of proving the existence of an object satisfying the property P is to simply consider
a randomized object X and prove P (X satisfies P ) > 0. When the property P can be broken
down into simpler properties P1, . . . , Pn so that P1 ∧ · · · ∧ Pn implies P , then we can use a union
bound P (X satisfies P ) ≥ P (X satisfies P1 ∧ · · · ∧ Pn) ≥ 1 −

∑n
i=1 P (X violates Pi), which shows

the desired existence when
∑n

i=1 P (X violates Pi) < 1. However, in many situations, we can obtain
a cleverer bound than this by using additional information of X and Pi’s.

In the following, we denote the event that X satisfies Pi by Ai and assume P (Ai) > 0. Our
objective is to establish a general scheme for evaluating P (

⋂n
i=1 Ai). For example, if these events

A1, . . . , An are independent, we simply have P (
⋂n

i=1 Ai) =
∏n

i=1 P (Ai) > 0. The Lovász local lemma
(Erdős & Lovász 1973, Spencer 1977) can treat a more general form of independence.

Let [n] := {1, . . . , n} for a positive integer n. A directed graph G with vertices [n] is called
dependency digraph for (Ai)

n
i=1 if the event Ai is independent from the family (Aj)j ̸=i,i ̸→j for each

i = 1, . . . , n. We discuss the ‘symmetric’ version of the local lemma in this report:

Theorem 1 (Local lemma). Let G be a dependency digraph for the events A1, . . . , An whose out-
degrees are all at most d. If, for some p ∈ [0, 1), P (Ac

i ) ≤ p holds for each i = 1, . . . , n and
ep(d+ 1) ≤ 1 holds, then we have P (

⋂n
i=1 Ai) > 0.

Proof. We first prove that for each i ∈ [n] and J ⊂ [n] \ {i} we have P
(
Ac

i

∣∣ ⋂
j∈J Aj

)
≤ 1/(d + 1)

inductively on |J |. Note that we regard
⋂

j∈∅ Aj = Ω, where Ω is the whole sample space. So this
holds true if |J | = 0 as P (Ac

i ) ≤ p ≤ 1/(e(d+1)). Now assume the inequality holds for all cases with
smaller cardinality of J . Let J1 = {j ∈ J | i → j} and J2 = J \ J1. Then, we have

P (Ac
i | ∩j∈JAj) = P

Ac
i

∣∣∣∣ ⋂
j∈J1

Aj ∩
⋂

k∈J2

Ak

 =
P
(
Ac

i ∩
⋂

j∈J1
Aj

∣∣ ⋂
k∈J2

Ak

)
P
(⋂

j∈J1
Aj

∣∣ ⋂
k∈J2

Ak

)
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by the Bayes rule. The numerator can be bounded by the independence as

P

Ac
i ∩

⋂
j∈J1

Aj

∣∣∣∣ ⋂
k∈J2

Ak

 ≤ P

(
Ac

i

∣∣∣∣ ⋂
k∈J2

Ak

)
= P (Ac

i ) ≤ p ≤ 1

e(d+ 1)
.

Let J1 = {j1, . . . , jm}, where m = |J1| ≤ d. Then, by writing J1(ℓ) = {jq | q < ℓ} for ℓ = 1, . . . ,m,
the denominator can be evaluated as

P

 ⋂
j∈J1

Aj

∣∣ ⋂
k∈J2

Ak

 =

m∏
ℓ=1

P

Ajℓ

∣∣∣∣ ⋂
j∈J1(ℓ)∪J2

Aj

 ≥
(
1− 1

d+ 1

)m

≥
(
1 +

1

d

)−d

≥ 1

e
,

where we have used the induction hypothesis (if J1 is empty the denominator is simply 1). Therefore,

we have proven P
(
Ac

i |
⋂

j∈J Aj

)
≤ 1/(d+ 1) for i ̸∈ J . Then, we can prove the desired fact as

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P

Ai

∣∣∣∣ ⋂
j∈[i−1]

Aj

 ≥
(
1− 1

d+ 1

)n

> 0,

where [0] = ∅.

Although this is the standard form of the local lemma widely used in the literature, we can
actually loosen the condition ep(d + 1) ≤ 1 to epd ≤ 1 when G is undirected, i.e., i → j ⇐⇒ j → i
(Shearer 1985). We call such a graph just a dependency graph in this note. Indeed, the usual
construction of the dependency digraph is done by finding independent random variables Y1, . . . , YN

so that each Ai is σ(Yk, k ∈ Ki)-measurable for some Ki ⊂ [N ], and make i → j if and only if
Ki∩Kj = ∅. As this construction gives an undirected graph (in the sense i → j if and only if j → i),
the condition epd ≤ 1 is sufficient in practice.

Before going into details of the stronger bound, let us decipher the proof given above. Indeed,

it suffices to prove P
(
Ai |

⋂
j∈[i−1] Aj

)
> 0, or more strictly P

(
Ai |

⋂
j∈J Aj

)
≥ λ > 0 uniformly.

What we have done then is the following evaluation (with the notation in the proof):

P

Ai

∣∣∣∣ ⋂
j∈J

Aj

 = 1− P

Ac
i

∣∣∣∣ ⋂
j∈J

Aj

 ≥ 1− P (Ac
i )∏m

ℓ=1 P
(
Ajℓ |

⋂
j∈J1(ℓ)∪J2

Aj

) . (∗)

Thus, if λ satisfies λ = 1− p/λd, the induction works. If we set f(λ) = λd − λd+1, then f takes its
maximum at λ = d/(d + 1) with f(λ) = dd/(d + 1)d+1, so it gives the above proof. As is already
mentioned, in the case of undirected dependency graph, we can refine the proof to get the following
bound.

Theorem 2 (Local lemma for undirected graphs; Shearer 1985). Let G be a dependency graph for
the events A1, . . . , An whose degrees are all at most d. If, for some p ∈ [0, 1), P (Ac

i ) ≤ p holds for
each i = 1, . . . , n and epd ≤ 1 holds, then we have P (

⋂n
i=1 Ai) > 0.

Remark 3. As we shall see in the following, p ≤ (d − 1)d−1/dd (> 1/(ed)) is sufficient for d ≥ 2
and p < 1/2 for d = 1 (equality sensitive). The latter is trivial as the events have independent
decomposition into pairs or singletons.

Proof of Theorem 2. It suffices to prove P (
⋂n

i=1 Ai) > 0 when d ≥ 2 and P (Ac
i ) ≤ p := (d−1)d−1/dd

holds uniformly for all i. Let λ = (d − 1)/d, which satisfies λ = 1 − p/λd−1. We first prove the
following claim:

Claim. Let i ∈ [n] and J ⊂ [n] \ {i}. If the number of vertices in J connected to i is at
most d− 1, then we have P (Ai | ∩j∈JAj) > λ.
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Let us prove this claim by induction on |J |. If |J | = 0 it is true as P (Ai) ≥ 1− p ≥ 1− p/λd−1 = λ.
For the general case, let J1 = {j1, . . . , jm} ⊂ J (where m ≤ d − 1) be the vertices connected to
i, and J2 = J \ J1. Let also J1(ℓ) = {jq | q < ℓ} for ℓ = 1, . . .m. By using the inequality (∗)
Note that jℓ is connected to at most d − 1 points in J1(ℓ) ∪ J2 (as it is already connected to i), so

P
(
Ajℓ |

⋂
j∈J1(ℓ)∪J2

Aj

)
> λ for each ℓ by induction hypothesis. Therefore, we obtain, from the

inequality (∗),

P

Ai

∣∣∣∣ ⋂
j∈J

Aj

 ≥ 1− P (Ac
i )∏m

ℓ=1 P
(
Ajℓ |

⋂
j∈J1(ℓ)∪J2

Aj

) > 1− p

λm
≥ 1− p

λd−1
= λ.

So the induction works.
Consider the pair i ∈ [n] and J ⊂ [n] \ {i} such that the degree of i is d in J ∪ {i}. In this case,

by using the same argument (except m = d) as above, we can prove P
(
Ai |

⋂
j∈J Aj

)
> 1 − p/λd.

Indeed, 1 − p/λd = 1 − 1/λ + (1 − p/λd−1)/λ = 2 − 1/λ ≥ 0 as we have λ ≤ 1/2 for d ≥ 2. In

particular, we have proven P
(
Ai |

⋂
j∈Aj

)
> 0 for all the cases. Therefore, we have P (

⋂n
i=1 Ai) =∏n

i=1 P
(
Ai |

⋂
j∈[i−1] Aj

)
> 0.

2 Optimality

More surprising result of Shearer (1985) is it has completely determined the upper bound of such p.
For d ≥ 2, define p0(d) be the supremum of p satisfying the following condition:

Condition A. For an arbitrary n and events A1, . . . , An with a dependency graph G whose degrees
are all at most d, P (Ac

i ) ≤ p for all i = 1, . . . , n implies P (
⋂n

i=1 Ai) > 0.

As we shall see, it actually coincides with the bound in Remark 3, i.e., p0(d) = (d − 1)d−1/dd.
Therefore, the optimal bound for the local lemma in the undirected case has been specified.

Let us discuss the construction of a counterexample when (d − 1)d−1/dd < p ≤ 1. For a given
graph G = (V,E) with degrees at most d, let 2V be the set of all subsets of V , and I(G) ⊂ 2V be
the set of all independent sets of G, i.e., S ⊂ I(G) if and only if S does not contain vertices i, j who
are adjacent in G. Consider the following function QG : 2V → R:

• QG(S) = 0 if S ̸∈ I(G).

•
∑

T⊃S QG(T ) =
∑

T⊃S, T∈I(G) QG(T ) = p|S| if S ∈ I(G).

This QG is indeed well-defined. The value QG(S) is equal to p|S| for a maximal independent set S,
and we can inductively determine QG(S) = p|S| −

∑
T⊋S Q(T ), and it does not cause any conflict as

I(G) has a poset structure. By using the inclusion-exclusion principle, we have another expression

QG(S) =
∑

T⊃S, T∈I(G)

(−1)|T |−|S|p|T |.

Remark 4. Let us explain some intuition behind this. If QG(S) is nonnegative for all S ⊂ 2V , then
QG is actually a probability measure as

∑
S QG(S) =

∑
S⊃∅ QG(S) = 1. Then we can consider a

family of events (Av)v∈V with

P

⋂
v∈S

Ac
v ∩

⋂
w∈V \S

Aw

 = QG(S)
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for each S ⊂ V . Then, note that for each S ∈ I(G) we have P
(⋂

v∈S Ac
v

)
=
∑

T⊂S QG(S) = p|S|. G
is then a dependency graph for these events. Indeed, for v ∈ V and S ∈ I(G) not adjacent to v, we
have, since S ∪ {v} ∈ I(G),

P

(
Ac

v ∩
⋂
w∈S

Ac
w

)
= p1+|S| = P (Ac

v)P

(⋂
w∈S

Ac
w

)
.

The same conclusion holds even when S ̸∈ I(G) as long as S is not adjacent to v (in that case both
sides becomes zero), so by an application of π-λ theorem, Av is independent from σ(Aw, (v, w) ̸∈ E).
Therefore, the function QG is a way to construct a family of events satisfying (1) the probability
of each event is 1 − p, (2) G is a dependency graph for the events, provided QG is nonnegative
everywhere.

We can consider the function Q also for subgraphs of G. For a subset of vertices W ⊂ V , let
G(W ) = (W,E|V×V ) be the induced subgraph of G and we just denote by QG(W ) the function
defined for this graph (for simplicity, QG(∅) is a constant function with QG(∅)(∅) = 1). Then, we can
prove the following lemma1.

Lemma 5. If QG(∅) < 0 holds, there exists a subset W ⊂ V such that

QG(W )(∅) < 0, QG(W )(S) ≥ 0 for all S ∈ 2W \ {∅}.

Proof. Since QG(∅) < 0, we can find a minimal W ⊂ V with QG(W )(∅) < 0, i.e., QG(W )(∅) < 0 and
QG(U)(∅) ≥ 0 for all U ⊊ W . We shall prove that this W actually satisfies the desired property.

Assume QG(W )(S) < 0 for some nonempty S ⊂ W . Let U ⊂ W \S be the vertices in W \S that
are not adjacent to S. Then, we have

QG(W )(S) =
∑

T⊃S, T∈I(G(W ))

(−1)|T |−|S|p|T |

= p|S|
∑

U∈I(G(U))

(−1)|U |p|U | = p|S|QG(U)(∅).

This implies QG(U)(∅) < 0 and contradicts the minimality of W . So QG(W )(S) ≥ 0 holds for all
∅ ⊊ S ⊂ W .

If we are given such a subset W , QG(W ) almost gives a probability measure over 2W . Let
RG(W )(S) =

∑
S⊂T⊂W QG(W )(T ). Note that from the very first definition of QG, we have

RG(W )(∅) =
∑
T⊂W

QG(W )(T ) = 1, RG(W )({v}) =
∑

{v}⊂T⊂W

QG(W )(T ) = p

for each v ∈ W . From the same argument in Remark 4, for v ∈ W and S ⊂ W \ {v} not adjacent to
v, we also have

RG(W )(S ∪ {v}) = pRG(W )(S). (†)

We shall obtain a probability measure over 2W by modifying QG(W ) slightly. Find δ ∈ (0, 1) such

that δQG(W )(∅)+ (1− δ)(1−p)|W | = 0 (or δ = (1−p)|W |/((1−p)|W |−QG(W )(∅)) explicitly). Then,
consider the function Q̃ : 2W → R given by

Q̃(S) = δQG(W )(S) + (1− δ)p|S|(1− p)|W |−|S|, S ⊂ W.

1In the original paper (Shearer 1985), the author only assumes QG(S) < 0 for some S ⊂ V to deduce the same
conslusion, but we could not prove this so give a surrogate statement here.
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This is a ‘mixture’ of the signed measure QG(W ) and the product of Bernoulli measures. From the

definition of δ, and the fact
∑

S⊂W p|S|(1 − p)|W |−|S| = (p + (1 − p))|W | = 1, this is actually a
probability measure over 2W . So, we can consider a family of events (Av)v∈W with

P

⋂
v∈S

Ac
v

⋂
w∈W\S

Aw

 = Q̃(S), S ⊂ W.

Here, for each S ⊂ W ,from the definition of Q̃, we have

P

(⋂
v∈S

Ac
v

)
=

∑
S⊂T⊂W

Q̃(T ) = δRG(W )(S) + (1− δ)
∑

S⊂T⊂W

p|T |(1− p)|W |−|T |

= δRG(W )(S) + (1− δ)p|S|.

Therefore, by using (†), for v ∈ W and S ⊂ W \ {v} not adjacent to v, we have

P

(
Ac

v ∩
⋂
w∈S

Ac
w

)
= p(δRG(W )(S) + (1− δ)p|S|) = P (Ac

v)P

(⋂
w∈S

Ac
w

)
.

Again, by the use of π-λ theorem, we see that G(W ) is actually a dependency graph for the events
(Av)v∈W . Now, notice that by the definition of δ we have P

(⋂
v∈W Av

)
= Q̃(∅) = 0. As G(W ) still

is a graph of degree at most d, this p violates Condition A. By combining with Lemma 5, we have
proven the following statement.

Lemma 6. Let G be a graph with degrees at most d. For an arbitrary p ∈ (0, 1], if QG(∅) =∑
S∈I(G)(−p)|S| < 0 holds, then p violates Condition A.

The final step for showing p0(d) = (d−1)d−1/dd is to construct a graph satisfying the assumption
of Lemma 6 for each p > (d−1)d−1/dd. For a given d ≥ 2, define a sequence of rooted trees (Tm)∞m=0

as follows:

• T0 is of a single vertex, which is also a root.

• For m ≥ 0, construct Tm+1 by connecting a new root x with the roots of d− 1 copies of Tm.

If d = 3, this is just the construction of a complete binary tree of depth m. It is clear that every
vertex in Tm is of degree at most d.

Let us consider the independent sets in Tm+2. Let Tm+2 consist of the root x and T
(1)
m+1, . . . , T

(d−1)
m+1

(copies of Tm+1) with roots x(1), . . . , x(d−1). Then, an independent set S ∈ I(Tm+2) is either given by⋃d−1
i=1 S(i) with S(i) ∈ I(T

(i)
m+1), or {x} ∪

⋃d−1
i=1 S̃(i) with S̃(i) ∈ I(T

(i)
m+1 \ {x(i)}), where T

(i)
m+1 \ {x(i)}

means the induced subgraph of T
(i)
m+1 without x(i) and is of d − 1 disjoint copies of Tm. Therefore,

if we simply denote am = QTm(∅), we have

am+2 =
∑

S∈I(Tm+2)

(−p)|S| =

 ∑
S∈I(Tm+1)

(−p)|S|

d−1

− p

 ∑
S∈I(Tm)

(−p)|S|

(d−1)2

= ad−1
m+1 − pa(d−1)2

m

for m ≥ 0. Also, we can see a0 = 1 − p and a1 = ad−1
0 − p = (1 − p)d−1 − p. We want to know for

which values of p the sequence (am)∞m=0 becomes negative at some m. If am > 0 and am+1 = 0 then
am+2 < 0, so it suffices to consider the condition of am being positive for all m.

We follow the technique of Shearer (1985) hereafter. Let bm = am+1/a
d−1
m for m ≥ 0. Then,

bm+1 = am+2/a
d−1
m+1 = 1− p/bd−1

m . So, for 0 < p < 1, the positivity of (am)∞m=0 is equivalent to the
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positivity of the sequence given by b−1 = 1 and bm = 1 − p/bd−1
m−1 for m ≥ 0. If bm > 0 for all m,

bm+1−bm = p(bm−1bm)1−d(bd−1
m −bd−1

m−1), so from b−1 > b0 inductively b0 > b1 > b2 > · · · > 0 holds.
Thus, there exists a limit λ = limm→∞ bm. Note that 0 < λ < 1, as bm+1 = 1 − p/bd−1

m becomes
negative if bm is sufficiently small. Therefore, the limit satisfies λ = 1− p/λd−1.

In other words, for a value of p such that there is no 0 < λ < 1 satisfying λ = 1 − p/λd−1,
or equivalently p = λd−1 − λd, am becomes negative and consequently p violates Condition A.
Similarly from what we have seen briefly before Theorem 2, the maximum value of f(λ) = λd−1−λd

for λ ∈ (0, 1) is (d− 1)d−1/dd. Therefore, we have the following conclusion:

Theorem 7. For each d ≥ 2, p ∈ (0, 1) satisfies Condition A if and only if p ≤ (d− 1)d−1/dd.
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