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In this report, we provide a brief introduction to the Lie theory, especially Lie’s third theorem,
which asserts that every finite-dimensional Lie algebra can be represented as a Lie algebra of a Lie
group. Although we have mainly followed the flow of arguments in Kobayashi & Oshima (2005),
as the authors introduce Lie groups as those locally isomophic to linear Lie groups, we have largely
modified details referencing Carter et al. (1995) and Duistermaat & Kolk (2000). Note that, though
we only consider the case of real Lie groups and Lie algebras for simplicity, there are parallel results
for the complex case.

In Section 1, we describe the overview of the theory, and in what logic Lie’s third theorem is
established. In Section 2, we give the definition of a Lie group and its Lie algebra. We prove that
Lie algebras captures the local structure of Lie groups (Theorem 1) in Section 3. Finally, in the case
of the general linear group GL(n,R) we show that any Lie subalgebra is a Lie algebra of some Lie
subgroup of GL(n,R), which is the special case of Theorem 4.

To deepen my understanding, I have tried to make this report close to self-contained and give
alternative proofs in my own way if possible. Because of this approach, however, the arguments have
become rather long, and I could not include some important aspects such as representation theoretic
viewpoints.

1 Introduction

In this section, we explain the big picture of the Lie theory informally. In this theory, there are two
kinds of objects: Lie groups and Lie algebras. To provide an overview of the theory, we sometimes
use a word without definition in this section. The detailed explanation is given in the following
sections.

A Lie group is a smooth manifold equipped with a group structure whose operations are smooth.
such examples have been used widely. the set of nonzero real numbers R× is a commutative Lie
group with its multiplication; the space of all the n×n invertible matrices GL(n,R) is an example of
non-commutative Lie group with matrix multiplication; the orthogonal group O(n) of A ∈ GL(n,R)
such that A⊤A = In is a compact Lie group. For each Lie group G, we can define a so-called
Lie algebra of G, which we shall denote by Lie(G). Usually Lie(G) is defined by adding a bracket
operation [·, ·] on the vector space T1G, which is the tangent space of G at the unit element 1. The
Lie algebra of a Lie group G indeed determines the local structure of G in the following sense:

Theorem 1. Lie groups G and G′ are locally isomorphic if and only if the corresponding Lie algebras
Lie(G) and Lie(G′) are isomorphic.

This assertion is significant in that the geometric study of the local structure of a Lie group can
be transferred into the algebraic study of its Lie algebra.

Apart from the concept of Lie algebras of Lie groups, we also have abstract Lie algebras, the
definition of which has no relation to Lie groups: a (real) Lie algebra g is a real vector space equipped
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with a bilinear map [·, ·] : g× g → g called Lie bracket that satisfies

[x, x] = 0, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for any x, y, z ∈ g. If we have a real associative algebra A, i.e., A is a real vector space equipped with
a ring structure that is compatible to the scalar multiplication, we can confirm that the commutator
[x, y] := xy − yx becomes a Lie bracket on A by a simple comuputation. Hence, R, M(n,R) (the
space of all n× n real matrices) and o(n) (the space of all skew-symmetric n× n real matrices) are
Lie algebras with the commutator. These abstract Lie algebras are indeed isomorphic to the Lie
algebras of the Lie groups R×, GL(n,R) and O(n), respectively.

Remarkably, Lie’s third theorem assures that in general there is always such a Lie group for each
finite-dimensional Lie algebra:

Theorem 2 (Lie’s third theorem). Any finite-dimensional Lie algebra is isomorphic to a Lie algebra
of a Lie group.

The proof of this theorem is difficult, but can be done by exploiting the following purely algebraic
result, which we do not prove in this note.

Theorem 3 (Ado’s theorem). Any finite-dimensional Lie algebra is isomorphic to a Lie subalgebra
of M(n,R) for some positive integer n.

In this note, our main objective is to derive Lie’s third theorem from Ado’s theorem. To do so,
we prove the following theorem:

Theorem 4 (analytic subgroup). Let G be a Lie group. For any Lie subalgebra h of Lie(G), there
is a unique connected Lie subgroup H ⊂ G such that Lie(H) = h.

Indeed, once we establish Theorem 4, and the fact the Lie algebra of GL(n,R) is M(n,R), it
follows that any Lie subalgebra of M(n,R) is a Lie algebra of some Lie subgroup of GL(n,R). Then
Lie’s third theorem immediately follows from Ado’s theorem. It is also notable that any Lie group
is locally isomorphic to a Lie subgroup of GL(n,R), which follows from Theorem 1 and Theorem 4
applied to Ado’s theorem.

2 Lie algebra of a Lie group

We start with basic definitions and properties of Lie groups.

Definition 5. A Lie group is a smooth manifold G equipped with a group structure, such that the
mappings

G×G → G; (x, y) 7→ xy, G → G;x 7→ x−1

are smooth.

Before proceeding to the definition of Lie(G), let us define tangent spaces and vector fields of a
smooth manifold without using the local coordinates. For a smooth manifold M , let C∞(M) be the
set of all smooth maps M → R.

Definition 6. Let M be a smooth manifold. The tangent space of M at p ∈ M is defined as

TpM :=

{
v : C∞(M) → R

∣∣∣∣ v is linear,
v(fg) = f(p)v(g) + g(p)v(f)

}
.

Also, a linear map X : C∞(M) → C∞(M); f 7→ X(f) is called a vector field on M if X(·)(p) ∈ TpM
for each p ∈ M .
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By using a local coordinate x = (x1, . . . , xn) around p, we can prove that each v ∈ TpM has a
form v =

∑n
i=1 ai

∂
∂xi

for some ai ∈ R. We can also prove that each vector field X locally has a form

X =

n∑
i=1

bi(x)
∂

∂xi
,

where each bi is smooth. Let us denote by X(M) the set of all the vector fields on M . Then, for
X,Y ∈ X(M), as a map C∞(M) → C∞(M), define [X,Y ] := f 7→ X[Y [f ]] − Y [X[f ]]. Then, for
f, g ∈ C∞(M), we have

X(Y (fg)) = X(fY (g) + gY (f)) = X(f)Y (g) +X(g)Y (f) + fX(Y (g)) + gX(Y (f)),

and so
[X,Y ](fg) = f [X,Y ](g) + g[X,Y ](f) ∴ [X,Y ] ∈ X(M).

This implies that X(M) is a Lie algebra in the abstract sense.

Definition 7. For a Lie group G, define

Lie(G) := {X ∈ X(G) | πgX = Xπg, ∀g ∈ G},

where πx : C∞(G) → C∞(G) for x ∈ G is defined by πx(f)(y) = f(x−1y).

It is clear that Lie(G) is closed under the Lie bracket as πgXY = XπgY = XY πg holds for
X,Y ∈ Lie(G). We next prove that Lie(G) is regarded as T1(G).

Proposition 8. For any Lie group G, Lie(G) and T1(G) are isomorphic as a real vector space.

Proof. Let X ∈ Lie(G). Then, by the definition of vector fields, X1 := X(·)(1) ∈ T1(G). Then, from
the commutativity πxX = Xπx, we have, for any f ∈ C∞(G) and x ∈ G,

(Xf)(x) = (πx−1Xf)(1) = (Xπx−1f)(1) = X1(πx−1f),

so X is determined by X1 and the map ι : Lie(G) → T1(G);X 7→ X1 is injective. It is clear that ι is
a linear map, so it suffices to prove its surjectivity. Let v ∈ T1(G) and define Xv as

Xv(f)(x) := v(πx−1f), f ∈ C∞(G), x ∈ G.

The linearity of Xv is clear as v is a linear map. The smoothness of v(πx−1f) with respect to x
follows from the fact that v is indeed a differential operator at 1. We also have

Xv(fg)(x) = v(πx−1fg) = v((πx−1f)(πx−1g))

= (πx−1f)(1)v(πx−1g) + (πx−1g)(1)v(πx−1f)

= f(x)Xv(g)(x) + g(x)Xv(f)(x),

so Xv is indeed a vector field. Since ι(Xv) = v holds, ι is surjective and threfore a vector space
isomorphism.

From this proposition, we see that Lie(G) is a finite-dimensional vector space, whose dimension
is the same as the manifold dimension of G.

We next construct the exponential map exp : Lie(G) → G. For an X ∈ Lie(G), consider the
expression

X =

n∑
i=1

ai(x)
∂

∂xi

using the local coordinate x = (x1, . . . , xn) around 1 ∈ G. Then, consider a local ODE for c : R → G
given by

dci(t)

dt
= ai(c(t)), (1)
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where c(t) = (c1(t), . . . , cn(t)) in the local coordinate. Then, there exists a unique solution c(t) such
that c(0) = 1 in some interval (−ε, ε). Note that the ODE is equivalent to c(t) satisfying

d

dt
f(c(t)) = (Xf)(c(t)) (2)

for all f ∈ C∞(G) by chain rule. If |s| is sufficiently small, from πx−1X = Xπx−1 with x = c(s), we
have

d

dt
f(c(s)c(t)) = (Xf)(c(s)c(t)).

As we also have d
dtf(c(s+ t)) = (Xf)(c(s+ t)) with the same initial value c(s), from the uniqueness

of ODE’s solution, we have c(s + t) = c(s)c(t), i.e., c is locally a homomorphism. For t outside
the interval (−ε, ε), we can define c(t) = c(t/n)n for a sufficiently large n. This is well-defined
as c is a homomorphism. For this c defined all over R, the ODE (2) is globally satisfied for any
f ∈ C∞(G). We in particular denote c(1) by eX and call it the exponential map. It is clearly
well-defined: exp tX = c(t) holds from the uniqueness of ODE’s solution. We may also write eX as
expX.

Note that for each f ∈ C∞(G), x ∈ G and Y ∈ Lie(G), we have, from the repeated use of (2),

(Y kf)(xetY ) =
dk

dtk
f(xetY ), k = 0, 1, . . . , t ∈ R.

Therefore, generally for Y1, . . . , Ym ∈ Lie(G), we have

(Y k1
1 · · ·Y km

m f)(x) =
∂k1

∂tk1
1

(Y k2
2 · · ·Y km

m f)(xet1Y1)

∣∣∣∣
t1=0

=
∂k1

∂tk1
1

∂k2

∂tk2
2

(Y k3
3 · · ·Y km

m f)(xet1Y1et2Y2)

∣∣∣∣
t2=t1=0

= · · · = ∂k1

∂tk1
1

· · · · · · ∂
km

∂tkm
m

f(xet1Y1 · · · etmYm)

∣∣∣∣
tm=···=t1=0

.

This gives the Taylor expansion of the function (t1, . . . , tm) 7→ f(xet1Y1 · · · etmYm):

f(xet1Y1 · · · etmYm) ∼
∑

k1,...,km≥0

tk1
1

k1!
· · · t

km
m

km!
(Y k1

1 · · ·Y km
m f)(x). (3)

The map exp has the following property:

Proposition 9. For any Lie group G, the exponential map exp : Lie(G) → G is a smooth map.

Proof. Take a basis {X1, . . . , Xn} of Lie(G). For an s = (s1, . . . , sn) ∈ Rn, define Ys := s1X1 + · · ·+
snXn. Take a local coordinate x = (x1, . . . , xn) around 1 ∈ G. As each Xi is a differential operator,
it has an expression

Xi = aij(x)
∂

∂xj
, j = 1, . . . , n,

where each aij is smooth. Then, exp(tY s) locally satisfies the ODE (from (1))

d

dt
exp(tYs)j =

n∑
i=1

siaij(exp(tYs)).

As an ODE is smooth with respect to the change of parameters, the mapping (t, s) 7→ exp(tYs) is
smooth in a neighborhood of 0. By fixing a sufficiently small t, we have s 7→ Ys is smooth in a
neighborhood of 0. Denote the image of this neighborhood by U .
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Then, as U is a neighborhood of 0 ∈ Lie(G), for any X ∈ Lie(G), there exists a positive integer
n such that U is also a neighborhood of n−1X. Hence, we have that

Y 7→ eY = en
−1Y · · · en

−1Y︸ ︷︷ ︸
ntimes

is smooth on a neighborhood of X. This means that exp is smooth everywhere.

In particular, as the derivative exp at 0 is identity, we have that exp is a diffeomorphism between
some neighborhood U of 0 ∈ Lie(G) and V of 1 ∈ G. Let us denote the smooth inverse map of exp
by log : V → U .

The following assertion assures that we can make G analytic (Duistermaat & Kolk 2000). We
do not prove this theorem here. We assume some metric on Lie(G) induced by its Euclidean-space
structure.

Theorem 10. Let G be a Lie group. The map (X,Y ) 7→ log(eXeY ) is analytic on U0×U0 for some
neighborhood U0 of Lie(G). Moreover, we can choose U0 so that for V0 := exp(U0), the κ

x : xV0 → U0

given by
κx(y) = log(x−1y)

forms an analytic atlas of G.

More formally, the transition map κx ◦ (κy)−1 is analytic on κy(xV0 ∩ yV0) for each x, y ∈ G, and
the operations of G are analytic in terms of this atlas. Remark that the composition of analytic maps
is also analytic, and the inverse function theorem holds with analyticity (Krantz & Parks 2002).

3 Correspondence up to local isomorphism

Hereafter, we assume all Lie groups are equipped with analytic structure given by their exponential
maps. The following proposition is essential in proving Theorem 1.

Proposition 11. Let G be a Lie group. Let {X1, . . . , Xn} be a basis of Lie(G). Then, for x ∈ G,
the mapping Ψx : Lie(G) → G given by

Φx(t1X1 + · · ·+ tnXn) = xet1X1 · · · etnXn , (t1, . . . , tn) ∈ Rn

attains an analytic diffeomorphism between some neighborhoods of 0 ∈ Lie(G) and x ∈ G.

Proof. From the definition of κx, we have

(κx ◦ Φx)(t1X1 + · · ·+ tnXn) = log(et1X1 · · · etnXn).

If we denote the mapping (X,Y ) 7→ log(eXeY ) by µ, we have that the n-fold composition

µn := µ(·, µ(·, . . . µ(︸ ︷︷ ︸
n times

·, ·) . . .))

is analytic on Ũn for a sufficiently small neighborhood Ũ of 0 ∈ Lie(G). As κx ◦Ψx = µn holds, we
have, from analyticity,

log(et1X1 · · · etnXn) = t1X1 + · · ·+ tnXn +O
(
t21 + · · ·+ t2n

)
, (4)

where we equip Lie(G) with a norm of ∥t1X1+ · · ·+ tnXn∥2 = t21+ · · ·+ t2n. Hence, by the inverse
function theorem, this κx ◦ Φx is locally an analytic diffeomorphism. As (κx)−1 is by definition an
analytic diffeomorphism, Φx also admits the property.

We next prove an algebraic useful result.
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Proposition 12. Let G be a Lie algebra, and let {X1, . . . , Xn} be the basis of Lie(G). Consider,
for each positive integer k,

Dk(G) := span{Xi1
1 · · ·Xin

n | i1 + · · ·+ in ≤ k},

as a linear subspace of the space of all left-invariant differential operators. Then, for any Y1, . . . , Yk ∈
Lie(G), Y1 · · ·Yk ∈ Dk(G) holds.

Proof. We prove both statements by induction on k. The case k = 1 is obvious. Then, from the
induction hypothesis and the linearity, it suffices to prove

Xi1
1 · · ·Xin

n Xℓ ∈ Dk(G)

for each i1 + · · ·+ in = k − 1 and ℓ ∈ {1, . . . , n}. As we have

X
ij
j Xℓ = XℓX

ij
j +

ij−1∑
p=0

Xp
j [Xj , Xℓ]X

ij−p−1
j ,

for each j, we obtain

Xi1
1 · · ·Xin

n Xℓ = Xi1
1 · · ·Xiℓ−1

ℓ−1 X
iℓ+1
ℓ X

iℓ+1

ℓ+1 · · ·Xin
n

+

n∑
q=ℓ+1

ij−1∑
p=0

Xi1
1 · · ·Xij−1

j−1 X
p
j [Xj , Xℓ]X

ij−p−1
j X

ij+1

j+1 · · ·Xin
n ,

and the conclusion holds as each summand has only k−1 terms (recall [Xj , Xℓ] is a linear combination
of {X1, . . . , Xn}).

Now recall Theorem 1:

Lie groups G and G′ are locally isomorphic if and only if the corresponding Lie algebras
Lie(G) and Lie(G′) are isomorphic.

We say G and G′ are locally isomorphic if for some neighborhood U of 1 ∈ G there is a homeomor-
phism φ : U → φ(U) such that φ(U) is a neighborhood of 1 ∈ G′ and

xy ∈ U ⇔ φ(x)φ(y) ∈ φ(U), xy ∈ U ⇒ φ(x)φ(y) = φ(xy).

Also, by stating Lie(G) and Lie(G′) are isomorphic, we mean there is a vector space isomorphism T
preserving the Lie bracket: T ([X,Y ]) = [T (X), T (Y )] for X,Y ∈ Lie(G).

Proof of Theorem 1. (if part) First we only consider G. Let {X1, . . . , Xn} be a basis of Lie(G). As
Φ1 defined in Proposition 11 is analytic and G itself has an analytic structure,

F : (s, t) = ((s1, . . . , sn), (t1, . . . , tn)) 7→ es1X1 · · · esnXnet1X1 · · · etnXn

is an analytic map. For sufficiently small s and t, again from Proposition 11, there exists an analytic
function u = (u1, . . . , un) of (s, t) such that F (s, t) = eu1X1 · · · eunXn .

For any analytic function f on a (sufficiently small) neighborhood of 1 ∈ G, from (3), we have

f(F (s, t)) =
∑

i1,...,in,j1,...,jn≥0

si11 · · · sinn tj11 · · · tjnn
i1! · · · in!j1! · · · jn!

(Xi1
1 · · ·Xin

n Xj1
1 · · ·Xjn

n f)(1)

=
∑

k1...kn≥0

uk1
1 · · ·ukn

n

k1! · · · kn!
(Xk1

1 · · ·Xkn
n f)(1).

6



From Proposition 12, there are constants such that

Xi1
1 · · ·Xin

n Xj1
1 · · ·Xjn

n =
∑

|k|≤|i|+|j|

ai,j,kX
k1
1 · · ·Xkn

n ,

where |α| := α1+ · · ·+αn for α ∈ Zn
≥0. Note that thi ai,j,k can be determined by only the coefficients

of [Xe, Xf ] in terms of the basis {Xg} (indeed the proof of Proposition 12 gives an algorithm).
Then, for the locally analytic function f : eu1X1 · · · eunXn 7→ uℓ, we have

tℓ =
∑
i,j

Ci,j,δℓ
si1 . . . sintj1 · · · tjn
i1! · · · in!j1! · · · jn!

, (5)

where (δℓ)i = 1{i=ℓ}.
As the Lie algebras are isomorphic, exactly the same coefficients Ci,j,k appear in the G′ coun-

terpart. Therefore, the group multiplication operations (determined by Φ1 and F ) of G and G′ are
locally homeomorphic.
(only if part) Let φ be the local hommeomorphism between G and G′. For X ∈ Lie(G) and
sufficiently small |s|, |t|, we have φ(e(s+t)X) = φ(esXetX) = φ(esX)φ(etX). From the continuity,
there must exist a unique X ′ ∈ Lie(G′) such that φ(etX) = etX

′
(in a neighborhood, and indeed

globally). As we can also consider φ−1, this correspondence between X and X ′ is bijective. We
denote it by ι : Lie(G) → Lie(G′). We shall prove that ι is indeed a isomorphism.

From (4), for X,Y ∈ Lie(G) and sufficiently small |t|, we have

m log

(
exp

(
t

m
X

)
exp

(
t

m
Y

))
= t(X + Y ) + O

(
t2

m

)
,

so by continuity limm→∞(e
t
mXe

t
mY )m = et(X+Y ). As we have φ(e

t
mXe

t
mY ) = e

t
m ι(X)e

t
m ι(Y ), we

obtain ι(X + Y ) = ι(X) + ι(Y ). Together with the sclar multiplication, ι is linear.
It only remains to prove that ι([X,Y ]) = [ι(X), ι(Y )]. We prove this by using (3). By letting

x = 1, m = 4, ti = t, (Y1, Y2, Y3, Y4) = (X,Y,−X,−Y ), we can compute that

f(etXetY e−tXe−tY ) = f(1) + t2([X,Y ]f)(1) + O(t3).

Then, as [X,Y ] ∈ Lie(G), from the very definition of exp in (2), we have, by letting f = log locally,

([X,Y ] log)(1) = [X,Y ] log exp(t[X,Y ])|t=0 =
d

dt
log exp(t[X,Y ])

∣∣∣∣
t=0

= [X,Y ]. (6)

Hence we see that log(etXetY e−tXe−tY ) = t2[X,Y ] + O(t3) and can follow the same way as the one
we have used to prove the linearity.

4 Linear Lie groups

Although we have investigated abstract Lie groups and their Lie algebras, hereafter we mainly treat
linear Lie groups. Indeed, to see Lie’s third theorem, proving Theorem 4 for G = GL(n,R) is
sufficient.

We first see that the Lie algebra of GL(n,R) is actually M(n,R) in the sense we have defined
previously. The matrix exponential map or logarithm map can be defined as a convergent power
series of matrices:

expA := I +

∞∑
k=1

1

k!
Ak, logA :=

∞∑
k=1

(−1)i−1

k
(A− I)k (for ∥A− I∥ < 1).
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What we should confirm is that matrices X ∈ M(n,R) determine elements of Lie(G): left-
invariant vector fields. Given the exponential map, the operation should be (from (2); we denote by
X̃ the operator corresponding to matrix X)

(X̃f)(x) = (X̃f)(xetX)
∣∣
t=0

=
d

dt
f(xetX)

∣∣∣∣
t=0

.

This operator obviously commutes with πx and indeed becomes a vector field from the Leibniz rule.
By looking at the operation at origin, we have

d

dt
f(etX)

∣∣∣∣
t=0

=

n∑
i,j=1

(XetX)ij
∂

∂Aij
f(xetX)

∣∣∣∣
t=0

=

n∑
i,j=1

Xij
∂

∂Aij
f(I),

where we see f : A 7→ f(A) for A ∈ GL(n,R). This is indeed the general form of elements in
TIGL(n,R).

Finally, let us confirm that the most important feature, the Lie bracket corresponds. From the
same computation as in (6), it suffices to observe that

f(xetXetY e−tXe−tY ) = f(x) + t2( ˜[X,Y ]f)(x) + O(t3). (7)

Indeed, as etX = I + tX + 1
2 t

2X2 +O(t3) in general, we have

etXetY = I + t(X + Y ) +
1

2
t2(X2 + 2XY + Y 2) + O(t3),

and so
etXetY e−tXe−tY = I + t2[X,Y ] + O(t3) = et

2[X,Y ]+O(t3).

Then, (7) immediately follows. Therefore, the notion of abstract Lie algebra is compatible to the
linear Lie algebra M(n,R) equipped with a commutator for the Lie group GL(n,R).

We shall prove the linear Lie group version of Theorem 4. Recall the statement:

Let G be a Lie group. For any Lie subalgebra h of Lie(G), there is a unique connected
Lie subgroup H ⊂ G such that Lie(H) = h.

The H in this statement is called an analytic subgroup of G. For a Lie algebra g, h ⊂ g is called its
Lie subalgebra if [h, h] := {[x, y] | x, y ∈ h} is included in h, i.e., h is closed under the Lie bracket.
Also, for a Lie group G, we call H ⊂ G a Lie subgroup if H is a subgroup of G that has the Lie
group structure making the inclusion H → G an immersion (Duistermaat & Kolk 2000).

Before proving the theorem, given a Lie subalgebra h ⊂ M(n,R), we introduce a bounded linear
operator ad : h → h for each Z ∈ h by ad(Z)W = [Z,W ] (ad itself is indeed a bounded linear
operator). As we have

∥ ad(Z)W∥ = ∥ZW −WZ∥ ≤ 2∥Z∥∥W∥,
The operator norm of ad(Z) is bounded by 2∥Z∥. We can also define f(ad(Z)) for an analytic
function f on R.

Proof of Theorem 4 for G = GL(n,R). We are given a Lie subalgebra h of M(n,R). As h is a finite-
dimensional subspace of M(n,R) as a vector space, Let us define H by

H := {eX1 · · · eXm | m ≥ 0, X1, . . . , Xn ∈ h}.

Then H is clearly a subgroup of G.
Let us give H a manifold structure. Take a basis {X1, . . . , Xm} of h. As h ⊂ M(n,R) holds,

we can take {Xm+1, . . . , Xn2} such that {X1, . . . , Xn2} becomes a basis of M(n,R). Then, for a
sufficiently small ε > 0, the map

φA
G : (−ε, ε)n

2

→ G; (t1, . . . , tn2) 7→ A exp(t1X1 + · · ·+ tn2Xn2)
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is a diffeomorphism onto a negihborhood of A for each A ∈ GL(n,R) and the family of (inverse of)
these maps makes an analytic atlas of GL(n,R) (a special case of Theorem 10). Then, define the
manifold structure of H by the restriction of this map, i.e.,

φA
H : (−ε, ε)m → H; (t1, . . . , tm) 7→ A exp(t1X1 + · · ·+ tmXm).

Then, {(φA)−1}A∈H makes an analytic atlas of H. Indeed, (φA
G)

−1 ◦ φB
H is analytic and injective,

and coincides with (φA
H)−1 ◦ φB

H on (φB
H)−1(ImφA

H ∩ ImφB
H). As the latter has an explicit analytic

inverse, H is now an analytic manifold. The inclusion map H → G is then clearly an immersion.
We finally prove that H is a Lie group. As {AeX | X ∈ h, ∥X∥ < δ} defines a neighborhood

system of A ∈ H, it suffices to prove for A,B ∈ H that

(h, h) → H; (X,Y ) 7→ (AeX)−1BeY

is analytic at (X,Y ) = 0 (it is equivalent to the analyticity of both of the group operations). Then, it

suffices to prove that there is a δ > 0 such that ∥X∥, ∥Y ∥ < δ ⇒ (AeX)−1BeY ∈ ImφA−1B
H , because

the desired analyticity then follows from the analyticity of G.
Let us write A−1B = eZ1 · · · eZk by some Z1, . . . , Zk. Then, we have

(AeX)−1BeY = eXABeY = eXeZ1 · · · eZkeY . (8)

In general, for any W,Z ∈ h and t ∈ R we have

e−ZeW eZ = e−Z

( ∞∑
i=0

1

i!

)
W ieZ =

∞∑
i=0

1

i!
(e−ZWeZ)i = exp(e−ZWeZ).

Here, e−tZWetZ is analytic for all t ∈ R, and we have

d

dt
(e−tZWetZ) = e−tZ(−Z)WetZ + e−tZWZetZ = e−tZ ad(−Z)WetZ .

Hence, we inductively obtain

di

dti
(e−tZWetZ) = e−tZ ad(−Z)iWetZ ∴ e−ZWeZ = ead(−Z)W

As h is a closed subspace of M(n,R) and also closed under the Lie bracket, we have e−ZWeZ ∈ h.
Therefore, we have a sequence W0,W1, . . . ,Wk ∈ h with W0 = X such that

eWj−1eZj = eZjeWj , j = 1, . . . , k.

Therefore, we have (AeX)−1BeY = ABeWkeY . Note that Wk → 0 as X → 0. Hence, it suffices to
prove that there exists a δ > 0 such that

X,Y ∈ h, ∥X∥, ∥Y ∥ ≤ δ =⇒ log(eXeY ) ∈ h.

To prove this, define Z(t) := log(etXeY ). Note that

∥etXeY − I∥ ≤ ∥etX(eY − I)∥+ ∥etX − I∥ ≤ e∥tX∥(e∥Y ∥ − 1) + e∥tX∥ − 1

holds, so Z(t) is analytic on (−2, 2) if ∥X∥ and ∥Y ∥ are sufficiently small. For such X and Y , as
Z(t+ s) = Z(t) + sZ ′(t) + o(s) holds for t ∈ [0, 1], we have

d

ds
eZ(t)+sZ′(t)

∣∣∣∣
s=0

=
d

dt
eZ(t)

∣∣∣∣
s=0

= XeZ(t). (9)

Additionally, there is a fomula for matrices P,Q ∈ M(n,R): (Kobayashi & Oshima 2005, Theorem
5.54)

d

ds
eP+sQ

∣∣∣∣
s=0

= eP f(ad(P ))Q,
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where f(x) = 1−e−x

x is an analytic function. As f(0) = 1, g := 1/f is analytic in a certain interval.
Then, if ∥Z(t)∥ is sufficiently small (which can be achieved by sufficiently small ∥X∥ and ∥Y ∥), we
can apply it to (9) and obtain

Z ′(t) = g(ad(Z(t)))e−Z(t)XeZ(t) = g(ad(Z(t)))ead(−Z(t))X.

As both sides are analytic on t ∈ (−2, 2) if ∥X∥ and ∥Y ∥ are sufficiently small, we can inductively
know Z(ℓ)(0) by comparing the coefficients of tℓ−1 for ℓ = 1, 2, . . .. At the same time, we see that
Z(0) = Y and Z(ℓ)(0) is generated by X,Z(0), . . . , Zℓ−1(0) and Lie brackets, and so Z(ℓ)(0) ∈ h.
Therefore, finally we have log(eXeY ) =

∑∞
ℓ=0

1
ℓ!Z

(ℓ)(0) ∈ h.
The fact H is connected is clear from the definition. We do not prove the uniquness here.

We finally remark that, as one can see from the argument in the previous proof, we can explicitly
calculate log(eXeY ) for sufficiently small (X,Y ) and that is not limited to linear Lie algebras but
holds universally. The formula is called the Baker–Campbell–Hausdorff formula and gives

log(eXeY ) = X + Y + [X,Y ] +
1

2
[X − Y, [X,Y ]] + · · · .
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