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In this report, we investigate the space H1/2(Rn). First of all, we followed largely the arguments
in Lieb & Loss (2001), but the flow and proofs are largely different from those in the book. I have
tried to prove most of the statements by myself to deepen my understanding.

In Section 1, we describe the physical background of the space a little, define the space H1/2(Rn),
and explain that the definition is natural to the motivation. In Section 2, we introduce the Poisson
kernel and describe its connection to H1/2(Rn). As the statement f ∈ H1/2(Rn) ⇒ |f | ∈ H1/2(Rn)
is simple but interesting, we provide a general argument behind this. In Section 3, we prove the
density of Cc(Rn) in H1/2(Rn). To do so, we introduce the Schwartz space S(Rn) and observe the
densely embedded sequence

Cc(Rn) → S(Rn) ↪→ H1/2(Rn) ↪→ L2(Rn),

though the last inclusion H1/2(Rn) ↪→ L2(Rn) is proven in Section 1. In the final section, we shall
see that we also have a continuous embedding H1/2(Rn) ↪→ Lp(Rn) in a certain range of p (Sobolev
inequality).

Throughout this report, let L2(Rn) denote the C-valued Lebesgue space and let ⟨f, g⟩ be the
inner product defined as

⟨f, g⟩ :=
∫
Rn

f(x)g(x) dx

for f, g ∈ L2(Rn), where z denotes the complex conjugate of z in general. We also let F : L2(Rd) →
L2(Rd); f 7→ F [f ] be the usual Fourier transform defined as the isometric extension of the map

F [f ](ω) =

∫
Rn

f(x)e−2πiω⊤x dx, ω ∈ Rn

defined on L1(Rn) ∩ L2(Rn).

1 Motivation and definition

We first start with giving motivation to considering the fractional Sobolev space H1/2(Rn). In the
physical background, n should be regarded as 3 in the description given below, but we keep using
the notation of Rn, as it finally connects to the general H1/2(Rn).

According to Greiner (2000, Chapter 1), the following second-order wave equation called the
Klein-Gordon equation is important in relativistic quantum mechanics:(

∂2

c2∂t2
−∆+

m2c2

ℏ2

)
ψ = 0,
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where ψ : R × Rn → C; (t, x) 7→ ψ(t, x) is the wave function, c is the speed of light, ℏ is the Dirac
constant, and m denotes the mass of the free particle we consider. Note also that ∆ represents the
Laplacian with respect to only x. In this regime, the energy operator is formally written as

E :=
√
−(ℏc)2∆+ (mc2)2.

We shall mathematically define this operator on an appropriate subset of L2(Rn) by using the Fourier
transform. As

(−(ℏc)2∆+ (mc2)2)ψ = F−1
[(
(2πℏc)2|ω|2 + (mc2)2

)
F [f ](ω)

]
holds by the usual identity of Fourier transforms (on an appropriate subset of L2(Rn)), we should
define

Eψ =
√
−(ℏc)2∆+ (mc2)2ψ := F−1

[√
(2πℏc)2|ω|2 + (mc2)2F [f ](ω)

]
. (1)

However, there remains a problem: on which subset of L2(Rn), does this operator E becomes
well-defined (Eψ ∈ L2(Rn)) and can we compute the “expectation” of it? The latter requirement
comes from the fact that in quantum mechanics the expectation of a physical quantity E we observe
is given by ∫

Rn

ψ(x)(Eψ)(x) dx.

The latter condition is indeed stronger, and so our requirement can be shown to be equivalent
with ∫

Rn

√
(2πℏc)2|ω|2 + (mc2)2 |F [f ](ω)|2 dω. (2)

by using the isometric property of Fourier transform. Since we clearly have the order evaluation (we
show formally in the proof of Proposition 3)√

(2πℏc)2|ω|2 + (mc2)2 = Θ(1 + |ω|),

the space H1/2(Rn) defined below is what we want (though there is no topological necessity for the
coefficient 2π of |ω|, we follow the definition of Lieb & Loss (2001)).

Definition 1. Define the fractional Sobolev space H1/2(Rn) as the set of all functions f ∈ L2(Rn)
satisfying

∥f∥2H1/2(Rn) :=

∫
Rn

(1 + 2π|ω|)|F [f ](ω)|2 dω <∞.

This norm ∥ · ∥H1/2(Rn) naturally induces an inner product.

Theorem 2. H1/2(Rn) is a Hilbert space with the inner product

⟨f, g⟩H1/2(Rn) :=

∫
Rn

F [f ](ω)F [g](ω)(1 + 2π|ω|) dω.

Moreover, H1/2(Rn) is continuously embedded in L2(Rn).

Proof. Note that if f, g ∈ H1/2(Rn), then f + g ∈ H1/2(Rn) also holds. This follows from

|F [f ] + F [g]|2 ≤ 2|F [f ]|2 + |F [g]|2.

Hence H1/2(Rn) is a linear subspace of L2(Rn) and ⟨·, ·⟩H1/2(Rn) is clearly an inner product on it.

Let us prove that this is indeed a Hilbert space. Let {fn}n≥1 be a Cauchy sequence in terms of this
inner product. As we have

∥fn − fm∥2H1/2(Rn) =

∫
Rn

|F [fn](ω)−F [fm](ω)|2(1 + 2π|ω|) dω,
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it is equivalent to {F [fn]}n≥1 being a Cauchy sequence in the L2-space L2(Rn, (1+2π|ω|) dω). From
the completeness of the L2-space, there exists a g ∈ L2(Rn, (1 + 2π|ω|) dω) such that F [fn] → g in
L2(Rn, (1 + 2π|ω|) dω). Therefore, F−1[g] is the limit of fn in H1/2(Rn).

Also, for an f ∈ H1/2(Rn), as

∥f∥2H1/2(Rn) = ∥F [f ]∥2L2(Rn) +

∫
Rn

2π|ω||F [f ](ω)|2 dω ≥ ∥f∥2L2(Rn)

by the isometry of the Fourier transform, the inclusion map H1/2(Rn) → L2(Rn) is continuous.

Going back to the physical background, we can formally prove the following equivalence.

Proposition 3. For arbitrary f ∈ L2(Rn) and m > 0, the integration (2) is finite if and only if
f ∈ H1/2(Rn).

Proof. It suffices to prove there exist universal positive constants C0 and C1 such that

C0(1 + 2π|ω|) ≤
√
(2πℏc)2|ω|2 + (mc2)2 ≤ C1(1 + 2π|ω|).

The existence of C0 follows from the AM-GM inequality:

√
(2πℏc)2|ω|2 + (mc2)2 ≥

√
(mc2 + 2πℏc|ω|)2

2
≥ min

{
mc2√

2
,
ℏc√
2

}
(1 + 2π|ω|).

The other direction can also be shown as follows:√
(2πℏc)2|ω|2 + (mc2)2 ≤ mc2 + 2πℏc|ω| ≤ max

{
mc2, ℏc

}
(1 + 2π|ω|).

So the proof is complete.

2 Characterization via Poisson kernel

Although we have established the space H1/2(Rn), it is still difficult to handle as it is only discussed
in terms of the Fourier transformation.

In this section, we shall see the operator
√
−∆ as the limit of more tractable operators of the

form
1

t

(
1− e−t

√
−∆
)
for t > 0. More formally, we define the following:

Definition 4. For each t > 0, define the Poisson kernel Pt : Rn × Rn → C as

Pt(x, y) :=

∫
Rn

exp
(
−2πt|ω|+ 2πiω⊤(x− y)

)
dω.

Remark that this kernel act (as an operator) on functions f : Rn → C as

Ptf(x) :=

∫
Rn

Pt(x, y)f(y) dy.

If we write φt(z) := Pt(y+z, y), then Ptf = φt ∗f is the definition, where ∗ denotes the convolution.
Here, φt is (defined as) the inverse Fourier transform of e−2πt|ω|, and so we have, from the relation
between the Fourier transform and the convolution, that

Ptf = F−1F [φt ∗ f ] = F−1
[
e−2πt|ω|F [f ]

]
.

This in particular implies that Ptf is well-defined if f ∈ L2(Rn). Note also that Pt can be regarded

as e−t
√
−∆ because

√
−∆ is defined as

√
−∆f = F−1 [2π|ω|F [f ]] similarly as we have defined E.

Then, we obtain the following assertion, which characterizes H1/2(Rn) in a different way.
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Theorem 5. A function f ∈ L2(Rn) is contained in H1/2(Rn) if and only if

It(f) :=
1

t
(⟨f, f⟩ − ⟨f, Ptf⟩)

is bounded on t > 0, i.e., supt>0 It(f) <∞ holds. If supt>0 It(f) <∞ holds, then

sup
t>0

It(f) = lim
t↘0

It(f) = ⟨f,
√
−∆f⟩

also holds.

Proof. By using the isometric property of Fourier transformation, we can rewrite It(f) as

It(f) =
1

t
(⟨F [f ],F [f ]⟩ − ⟨F [f ],F [Ptf ]⟩)

=

∫
Rn

1− e−2πt|ω|

t
|F [f ](ω)|2 dω. (3)

Let g(t) := t−1(1− e−t) on t > 0. Then,

d

dt
g(t) =

e−tt− (1− e−t)

t2
=

1 + t− et

t2et
≤ 0

holds since et ≥ 1+ t. Therefore, g is monotone decreasing on t > 0 and satisfies limt↘0 g(t) = 1. In
terms of g, we obtain, from (3), the monotone convergence

It(f) =

∫
Rn

g(t)2π|ω| |F [f ](ω)|2 dω ↗
∫
Rn

2π|ω| |F [f ](ω)|2 dω (t↘ 0),

where we have used the monotone convergence theorem for the limit. This immediately implies the
latter part of the statement. For the former part, as F [f ] ∈ L2(Rd), f ∈ H1/2(Rd) is equivalent to
limt↘ It(f) < ∞ (from the above limit). From the monotonicity of It(f) with respect to t, we can
conclude that this is equivalent to supt>0 It(f) <∞.

We next prove an interesting result: for each f ∈ H1/2(Rn), |f | ∈ H1/2(Rn) also holds. We shall
prove this assertion from a little broader perspective.

Proposition 6. Let k : Rd → C be an integrable function such that k(−x) = k(x) holds for any
x ∈ Rd and

∫
Rd k(x) dx = 1 holds. Then, for an arbitrary f ∈ L2(Rd),

⟨f, f⟩ − ⟨f, k ∗ f⟩ = 1

2

∫∫
Rd×Rd

k(x− y)|f(x)− f(y)|2 dxdy

holds.

Proof. From Young’s inequality (e.g., Bogachev 2007, Theorem 3.9.4), we know k∗f is defined almost
everywhere and in L2(Rd). This is also true for |k| ∗ |f |, so we can use Fubini’s theorem to obtain

⟨f, k ∗ f⟩ =
∫
Rd

f(x)(k ∗ f)(x) dx

=

∫
Rd

f(x)

∫
Rd

k(x− y)f(y) dy dx

=

∫∫
Rd×Rd

k(x− y)f(x)f(y) dxdy. (4)

From k(x− y) = k(y − x), we also have∫∫
Rd×Rd

k(x− y)f(x)f(y) dxdy = ⟨f, k ∗ f⟩ . (5)
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From the assumption
∫
Rd k(x) dx = 1, we have∫

Rd

k(x− y) dx = 1,

∫
Rd

k(x− y) dy =

∫
Rd

k(y − x) dy = 1,

and so ∫∫
Rd×Rd

k(x− y)|f(x)|2 dxdy =

∫∫
Rd×Rd

k(x− y)|f(y)|2 dx dy = 1 (6)

holds.
By combining (4), (5), (6), we finally obtain the desired equality.

If k is additionally nonnegative real in the previous proposition, we have the following assertion.

Proposition 7. Let k : Rd → R≥0 be an even function with
∫
Rd k(x) dx = 1. Then, for an arbitrary

f ∈ L2(Rd),
⟨|f |, |f |⟩ − ⟨|f |, k ∗ |f |⟩ ≤ ⟨f, f⟩ − ⟨f, k ∗ f⟩ .

holds.

Proof. From Proposition 6 and the assumption k ≥ 0, it suffices to prove

|f(x)− f(y)| ≥ ||f(x)| − |f(y)|| ,

but this just a triangle inequality, so the proof is complete.

From this proposition and the first part of Theorem 5, the result f ∈ H1/2(Rn) ⇒ f ∈ H1/2(Rn)
follows if we prove that each φt (such that φt(x − y) = Pt(x, y)) satisfies the condition. The
integrability and nonegativity follows as we can write φt explicitly as follows (Stein & Weiss 1971,
Theorem 1.14):

φt(x) = Γ

(
n+ 1

2

)
π−n+1

2
t

(t2 + |x|2)n+1
2

.

The assumption
∫
Rd φt(x) dx = 1 can be proven by using that this integral is indeed the value of

F [φt](0) and the Fourier transform is F [φt](ω) = e−2πt|ω| by definition. Therefore, we finally obtain
the following assertion.

Theorem 8. For an arbitrary f ∈ H1/2(Rn), |f | ∈ H1/2(Rn) holds.

Remarkably, the generality of Proposition 7 yields an analogous result also for H1(Rn), where
we use the heat kernel instead of the Poisson kernel.

Note also that there are parallel results for relativistic kinetic energy, i.e., the operator E instead
of

√
−∆. However, in this report, we mainly consider the operator

√
−∆ for simplicity and omit the

relativistic counterpart.

3 Density

As is common when we define new function classes, we shall prove that the space of compactly
supported smooth functions is a dense subset of H1/2(Rn). To do so in a different way from the
approach adopted in Lieb & Loss (2001), we introduce a few properties of the Schwartz space.
Although these are well-known, for example, we can find them in Grafakos (2008, Chapter 2).

For a multi-index α = (α1, . . . , αn) ∈ Zn
≥0, we write

|α| := α1 + · · ·+ αn, xα := xα1
1 · · ·xαn

n , ∂α :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

for each x = (x1, . . . , xn) ∈ Rn.
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Definition 9. A smooth function f : Rn → C is called a Schwartz function (or a rapidly decreasing
function) if it satisfies

ρα,β(f) := sup
x∈Rd

∣∣xα∂βf(x)∣∣ <∞

for all multi-indices α, β ∈ Zn
≥0. We denote the space of all Schwartz functions by S(Rn).

S(Rn) can be metrized by the sequence of seminorms ρα,β . For example, we can define a metric

dS(f, g) :=
∑

α,β∈Zn
≥0

min{1, ρα,β(f − g)}
2|α|+|β| .

Here dS(f, g) ≤ 1 always holds. (S(Rn), dS) can be shown to be a complete metric space.
For this Schwartz space S(Rn), the following theorem shows the good compatibility of the

Schwartz space and the Fourier transform.

Theorem 10. The image of the Fourier transform F on S(Rn) coincides with S(Rn), and the
reduced map F : S(Rn) → S(Rn) is a homeomorphism with respect to the metric dS .

Proof. As an elementary properties of the Fourier transform, for f ∈ S(Rn), we have F [∂αf ](ω) =
(2πiω)αF [f ](ω) for each multi-index α. From the fact that F−1[g](x) = F [g](−x) holds for each
g ∈ S(Rn), we also have

F−1[∂αg](x) = F [∂αg](−x) = (−2πix)αF [g](−x) = (−2πix)αF−1[g](x)

for an α ∈ Zn
≥0, and this implies ∂αF [f ] = F [(−2πix)αf ]

Therefore, we have, for each multi-indices α and β,

ρα,β(F [f ]) =
∥∥ωα∂βF [f ](ω)

∥∥
L∞ =

∥∥ωαF
[
(−2πix)βf

]∥∥
L∞ =

∥∥∥∥ (−2πi)|β|

(2πi)|α|
F
[
∂αxβf

]∥∥∥∥
L∞

≤ (2π)|β|−|α| ∥∥∂αxβf∥∥
L1 <∞ (from the integral expression of F)

as desired. Here, the last L1-integrability of ∂αxβf follows as the integrand is written as a finite sum
of (polynomial)× ∂γf and this decreases faster than (1 + |x|2n)−1, for example, which is integrable.

Therefore, we have shown that the image of F on S(Rn) is included in S(Rn). As the Fourier
inversion F−1 has almost the same expression as F , we can similarly prove that this map is a
self-bijection.

For the continuity with respect to dS , it suffices to prove that ρα,β(F [f ]) → 0 as dS(f, 0) → 0
for each α, β as dS is translation-invariant (the case of F−1 can also be done from this via variable
transformation). We can prove this by refining the argument of proving ρα,β(F [f ]) <∞. Indeed, by
writing ∂αxβf =

∑
(γ,δ)∈Γ cγ,δx

γ∂δf , where Γ = Γ(α, β) is a finite set of pair of multi-indices and
cγ,δ are constants, we have

(1 + |x|2n)∂αxβf =
∑

(γ,δ)∈Γ

cγ,δ(1 + |x|2n)xγ∂δf =
∑

(γ,δ)∈Γ

cγ,δ
∑
ϵ∈E

c′ϵx
γ+ϵ∂δf,

where E is a finite set of multi-indices such that 1 + |x|2n =
∑

ϵ∈E c
′
ϵx

ϵ. Therefore,

sup
x∈Rn

(1 + |x|2n)|∂αxβf | ≤
∑

(γ,δ,ϵ)∈Γ×E

cγ,δc
′
ϵργ+ϵ,δ(f)

holds, and so we finally obtain

ρα,β(F [f ]) ≤ (2π)|β|−|α| ∥∥∂αxβf∥∥
L1 ≤

(∫
Rn

dx

1 + |x|2n

) ∑
(γ,δ,ϵ)∈Γ×E

cγ,δc
′
ϵργ+ϵ,δ(f) → 0

as dS(f, 0) tends to zero.

6



We next prove the relation of S(Rn) with other common function spaces. Denote the space of all
smooth (i.e., infinitely differentiable) functions with a compact support by Cc(Rn). Cc(Rn) ⊂ S(Rn)
is obvious.

Theorem 11. Cc(Rn) is a dense subset of S(Rn).

Proof. Take an arbitrary f ∈ S(Rn). It suffices to prove that for each positive integer m and ε > 0,
there exists a g ∈ Cc(Rn) such that ρα,β(f − g) < ε for all |α|, |β| ≤ m.

Take a function h ∈ Cc(Rn) such that h(x) = 1 on |x| ≤ 1, h(x) ∈ [0, 1] on |x| ∈ [1, 2], and
h(x) = 0 on |x| ≥ 2. Such a function indeed exists; it can be constructed by exploiting the one-
dimensional smooth function

t 7→

{
0 (t ≤ 0)

e−1/t (t > 0)
,

but we omit the details here. For a positive integer N , define hN (x) := h(N−1x). Then, for each
multi-index α, ∂αhN (x) = N−α(∂αh)(N−1x) holds. In particular, we have

N max
0<|α|≤m

sup
x∈Rn

|∂αhN (x)| ≤ max
0<|α|≤m

sup
x∈Rn

|∂αh(x)| =: C <∞ (7)

for each N . We shall prove that limN→∞ ρα,β(hNf − f) = 0 for all |α|, |β| ≤ m. Fix α and β such
that |α|, |β| ≤ m. Then, from the Leibniz rule, we have

xα∂β(hNf − f) = (hN − 1)xα∂βf +
∑

β1+β2=β
β1 ̸=0

cβ1,β2
(∂β1hN )(xα∂β2f)

for some positive integer constants cβ1,β2
. By using (7), we obtain

sup
x∈Rn

|xα∂β(hNf − f)| ≤ sup
|x|≥N

|xα∂βf(x)|+ C

N

∑
β1+β2=β

β1 ̸=0

cβ1,β2
ρα,β2

(f).

The second term in the right-hand side obviously tends to zero, whereas the convergence first term
is also clear from supx∈Rn |x||xα∂βf(x)| <∞. Hence, the assertion of the theorem holds.

From the usual density result of Cc(Rn) ⊂ Lp(Rn) (e.g., Theorem 1.5.8 in the lecture note), we
can prove the following theorem.

Theorem 12. For 1 ≤ p < ∞, S(Rn) is a dense subset of Lp(Rn). Moreover, the inclusion map
S(Rn) → Lp(Rn) is continuous.

Proof. As Cc(Rn) is a dense subset of Lp(Rn), the former assertion is clear just from the inclusion
Cc(Rn) ⊂ S(Rn).

For the latter part, we follow the proof of Proposition 2.2.6 in Grafakos (2008). For an arbitrary
f ∈ S(Rn), we have

∥f∥pLp =

∫
|x|≤1

|f(x)|p dx+

∫
|x|≥1

1

|x|n+1
|xn+1||f(x)|p dx

≤ sup
x∈Rn

|f(x)|p +

(∫
|x|≥1

dx

|x|n+1

)
sup
x∈Rn

∣∣∣x⌈n+1
p ⌉f(x)

∣∣∣p ,
and so it follows that fn → f in dS implies fn → f in Lp.

Let us go back to the space H1/2(Rn).

Theorem 13. S(Rn) is a dense subset of H1/2(Rn). Moreover, the inclusion S(Rn) ⊂ H1/2(Rn) is
continuous.
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Proof. The inclusion follows from F(S(Rn)) = S(Rn) (Theorem 10). Indeed, as F [f ] ∈ S(Rn) holds
for each f ∈ S(Rn), (1 + 2π|ω|)|F [f ](ω)|2 is integrable.

We next prove the density. Take an arbitrary f ∈ H1/2(Rn). Then, from the definition of
H1/2(Rn), (1 + 4π2|ω|2)1/4F [f ](ω) is in L2(Rn):∫

Rn

(1 + 4π2|ω|2)1/2|F [f ](ω)|2 dω ≤
∫
Rn

(1 + 2π|ω|)|F [f ](ω)|2 dω <∞.

Hence, from Theorem 12 with p = 2, there exists a sequence gn ∈ S(Rn) which is convergent to
(1 + 4π2|ω|2)1/4F [f ] in L2. As (1 + 4π2|ω|2)−1/4 is smooth, (1 + 4π2|ω|2)−1/4gn is also smooth. We
prove this function is indeed in S(Rn). For each multi-index α, we can prove that

∂α(1 + 4π2|ω|2)−1/4 =

|α|∑
i=0

ci(x)(1 + 4π2|ω|2)−1/4−i

for some polynomials ci, by induction. Combining this with the Leibniz rule, we see that

sup
x∈Rn

∣∣∣ωα∂β
(
(1 + 4π2|ω|2)−1/4gn

)∣∣∣ <∞

holds for each α and β. Therefore, by letting fn := F−1
[
(1 + 4π2|ω|2)−1/4gn

]
, we have

∥fn − f∥H1/2 ≤ 21/4
∥∥∥(1 + 4π2|ω|2)1/4(F [fn]−F [f ])

∥∥∥
L2

=
∥∥∥gn − (1 + 4π2|ω|2)1/4F [f ]

∥∥∥
L2

→ 0

as n→ ∞. Since we know fn ∈ S(Rn) from Theorem 10, S(Rn) is dense in H1/2(Rn).
Finally, we shall prove the continuity of the inclusion. This is done in a similar manner to the

previous theorem. Indeed, we have, for f ∈ S(Rn),

∥f∥2H1/2 ≤
∫
|ω|≤1

(1 + 2π)|F [f ](ω)|2 dω +

∫
|ω|≥1

1 + 2π

|ω|n+1
|ω|n+2|F [f ](ω)|2 dω

≤ (1 + 2π) sup
ω∈Rn

|F [f ](ω)|2 +

(∫
|ω|≥1

1 + 2π

|ω|n+1
dω

)
sup
ω∈Rn

∣∣∣|ω|⌈n+2
2 ⌉F [f ](ω)

∣∣∣2 .
Thus, as f 7→ F [f ] is continuous on (S(Rn), dS), S(Rn) ⊂ H1/2(Rn) is a continuous embedding.

Combining those results, we finally obtain the following assertion.

Theorem 14. Cc(Rn) is a dense subset of H1/2(Rn).

Proof. As S(Rn) is dense in H1/2(Rn) (Theorem 13), for each ε > 0 and f ∈ H1/2(Rn), there is
an g ∈ S(Rn) such that ∥g − f∥H1/2 ≤ ε/2. As Cc(Rn) is dense in S(Rn) (Theorem 11), there
exists a sequence gn ∈ Cc(Rn) convergent to g under the metric dS . From the continuity of inclusion
S(Rn) ⊂ H1/2(Rn), ∥gn − g∥H1/2 → 0 also holds. Therefore, for a sufficiently large n, we have

∥gn − f∥H1/2 ≤ ∥gn − g∥H1/2 + ∥g − f∥H1/2 ≤ ε

2
+
ε

2
≤ ε.

As f and ε are arbitrary, the proof is complete.

4 Sobolev inequality

In this final section, we try the generalization of the continuous embedding H1/2(Rn) ↪→ L2(Rn)
(Theorem 2). Although the statement holds even for p = 2n/(n− 1) with n ≥ 2 (Lieb & Loss 2001,
Theorem 8.4; Di Nezza et al. 2012, Theorem 6.5), we here omit the proof for that case.
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Theorem 15 (Sobolev inequality). For each p ∈ [2, 2n/(n − 1)) (the right end is ∞ when n = 1),
there exists a constant Cn,p > 0 satisfying

∥f∥Lp(Rn) ≤ Cn,p∥f∥H1/2(Rn)

for all f ∈ H1/2(Rn). In particular, H1/2(Rn) is continuously embedded in Lp(Rn).

Proof. This is the generalization of the proof of (Lieb & Loss 2001, Theorem 8.5). The case p = 2
has been already proven in Theorem 2, where we can take C2 = 1. Let f ∈ H1/2(Rn). Then, for
p > 2, we take q ∈ (1, 2) such that 1/p+ 1/q = 1. Then, we have, for an r such that 1/r + q/2 = 1,

∥F [f ]∥qLq =

∫
Rn

(1 + 2π|ω|)−q/2
∣∣∣F [f ](ω)(1 + 2π|ω|)1/2

∣∣∣q dω

≤
∥∥∥(1 + 2π|ω|)−q/2

∥∥∥
Lr

∥∥∥∣∣∣F [f ](ω)(1 + 2π|ω|)1/2
∣∣∣q∥∥∥

L2/q
(from Hölder’s inequality)

=
∥∥∥(1 + 2π|ω|)−q/2

∥∥∥
Lr

∥f∥q
H1/2 .

From the Haussdorff-Young inequality (Lieb & Loss 2001, Theorem 5.7; Grafakos 2008, Proposition
2.2.16), we have ∥f∥Lp ≤ ∥F [f ]∥Lq , and so it suffices to confirm that (1 + 2π|ω|)−qr/2 is integrable.

Indeed, we have

r =
1

1− q/2
=

1

1− 1
2(1−1/p)

=
2(1− 1/p)

2(1− 1/p)− 1
=

2(p− 1)

p− 2
,

and so
qr

2
=

1

1− 1/p

p− 1

p− 2
=

p

p− 2
.

As we have ∫
Rn

(1 + 2π|ω|)−p/(p−2) dω <∞ (8)

when p/(p− 2) > n, the conclusion holds.

For n ≥ 2, the end exponent p = 2n
n−1 is called the fractional critical exponent (Di Nezza et al.

2012). In this proof, this exponent is indeed critical in whether or not achieving (8). Then, it is
natural to consider the case n = 1 and p = ∞, which can be regarded as a critical case. However,
there is a counterexample.

For each N ≥ 3, consider the function

fN (x) =

{
1

x log x (e ≤ x ≤ N)

0 (otherwise)
.

Then, we have ∥F−1[fN ]∥L∞ ≤ ∥fN∥L1 , and this equality indeed holds as F−1[fN ] is continuous
due to fN ∈ L1(R) and

F−1[fN ](0) =

∫
R
fN (x) dx = ∥fN∥L1 .

We can explicitly calculate as∥∥F−1[fN ]
∥∥
L∞ =

∫ N

e

dx

x log x
= log logN − log log e = log logN.

We also have ∥∥F−1[fN ]
∥∥2
H1/2 ≤ (1 + 2π)

∫ N

e

dx

x(log x)2
= (1 + 2π)

(
1− 1

logN

)
.

Therefore, we obtain∥∥F−1[fN ]
∥∥
L∞

∥F−1[fN ]∥H1/2

≥ (1 + 2π)−1/2

(
1− 1

logN

)1/2

log logN → ∞

as N → ∞. In particular, there is no Sobolev inequality like ∥ · ∥L∞ ≤ C1,∞∥ · ∥H1/2 .
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